Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Seismograms from two borehole seismometers near the 2019 Ridgecrest, California, aftershock sequence do not return to pre-mainshock noise levels for over ten days after the M 7.1 Ridgecrest mainshock. The observed distribution of root mean square amplitudes in these records can be explained with the Reasenberg and Jones (1989) aftershock occurrence model, which implies a continuous seismic “hum” of overlapping aftershocks of M > −2 occurring at an average rate of 10 events per second after ten days, which prevents observing the background aseismic noise level at times between the body-wave arrivals from cataloged and other clearly observed events. Even after the borehole noise levels return at their quietest times to pre-mainshock conditions, the presence of overlapping low-magnitude earthquakes for 80 days is implied by waveform cross-correlation results provided using the matrix profile method. These results suggest a hidden frontier of tiny earthquakes that potentially can be measured and characterized even in the absence of detection and location of individual events.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Abstract Mid‐ocean ridges generate basalt and harzburgite, which are introduced into the mantle through subduction as a mechanical mixture, contributing to both lateral and radial compositional heterogeneity. The possible accumulation of basalt in the mantle transition zone has been examined, but details of the mantle composition below the 660‐km discontinuity (hereafter d660) remain poorly constrained. In this study, we utilize the subtle waveform details ofS660S, the underside shear‐wave reflection off the d660, to interpret the seismic velocity, density, and compositional structure near, and particularly below, the d660. We identify a significant difference inS660Swaveform shape in subduction zones compared to other regions. The inversion results reveal globally enriched basalt at the d660, with a notably higher content in subduction zones, consistent with the smaller impedance jump andS660Speak amplitude. The basalt fraction decreases significantly to less than 10% near 800‐km depth, forming a global harzburgite‐enriched layer and resulting in a steep seismic velocity gradient just below the d660, in agreement with 1D global reference models. The striking compositional radial variations near the d660 verify geodynamic predictions and challenge the applicability of homogeneous radial compositional models in the mantle. These variations may also affect the viscosity profile and, consequently, the dynamics at the boundary between the upper and lower mantle.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract We apply the Matrix Profile algorithm to 100 days of continuous data starting 10 days before the 2019 M 6.4 and M 7.1 Ridgecrest earthquakes from borehole seismic station B921 near the Ridgecrest aftershock sequence. We identify many examples of reversely polarized waveforms, but focus on one particularly striking earthquake pair with strongly negatively correlated P and S waveforms at B921 and several other nearby stations. Waveform‐cross‐correlation‐based relocation of these events indicates they are at about 10 km depth and separated by only 115 m. Individual focal mechanisms are poorly resolved for these events because of the limited number of recording stations with unambiguous P polarities. However, relative P and S polarity and amplitude information can be used to constrain the likely difference in fault plane orientation between the two events to be 5–20°. We explore possible models to explain these observations, including low effective coefficients of fault friction and short‐wavelength stress heterogeneity caused by prior earthquakes. Although definitive conclusions are lacking, we favor local stress heterogeneity as being more consistent with other observations for the Ridgecrest region.more » « lessFree, publicly-accessible full text available November 1, 2025
-
ABSTRACT We present initial findings from the ongoing Community Stress Drop Validation Study to compare spectral stress-drop estimates for earthquakes in the 2019 Ridgecrest, California, sequence. This study uses a unified dataset to independently estimate earthquake source parameters through various methods. Stress drop, which denotes the change in average shear stress along a fault during earthquake rupture, is a critical parameter in earthquake science, impacting ground motion, rupture simulation, and source physics. Spectral stress drop is commonly derived by fitting the amplitude-spectrum shape, but estimates can vary substantially across studies for individual earthquakes. Sponsored jointly by the U.S. Geological Survey and the Statewide (previously, Southern) California Earthquake Center our community study aims to elucidate sources of variability and uncertainty in earthquake spectral stress-drop estimates through quantitative comparison of submitted results from independent analyses. The dataset includes nearly 13,000 earthquakes ranging from M 1 to 7 during a two-week period of the 2019 Ridgecrest sequence, recorded within a 1° radius. In this article, we report on 56 unique submissions received from 20 different groups, detailing spectral corner frequencies (or source durations), moment magnitudes, and estimated spectral stress drops. Methods employed encompass spectral ratio analysis, spectral decomposition and inversion, finite-fault modeling, ground-motion-based approaches, and combined methods. Initial analysis reveals significant scatter across submitted spectral stress drops spanning over six orders of magnitude. However, we can identify between-method trends and offsets within the data to mitigate this variability. Averaging submissions for a prioritized subset of 56 events shows reduced variability of spectral stress drop, indicating overall consistency in recovered spectral stress-drop values.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Abstract We identify 51 near-contemporaneous earthquake pairs along a 100 km segment of California’s San Andreas fault south of San Juan Bautista between 1981 and 2021 that are separated by 5–50 s in time and 5–50 km in space. The event pairs are found throughout the time period and generally involve events smaller than magnitude 2. For 42 of these pairs (82%), the later earthquake is northwest of the earlier event—an asymmetry that is hard to explain with standard earthquake triggering models and suggests an underlying physical connection between the events. We explore possible origins for these observations but are unable to identify a definitive explanation.more » « less
-
The destructive 2023 moment magnitude ( M w ) 7.8-7.7 earthquake doublet ruptured multiple segments of the East Anatolian Fault system in Turkey. We integrate multi-scale seismic and space-geodetic observations with multi-fault kinematic inversions and dynamic rupture modeling to unravel the events’ complex rupture history and stress-mediated fault interactions. Our analysis reveals three sub-shear slip episodes during the initial M w 7.8 earthquake with delayed rupture initiation to the southwest. The M w 7.7 event occurred 9 hours later with larger slip and supershear rupture on its western branch. Mechanically consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths, and require a heterogeneous background stress. Our results highlight the importance of combining near- and far-field observations with data-driven and physics-based models for seismic hazard assessment.more » « less
-
Abstract Mid‐lithosphere discontinuities are seismic interfaces likely located within the lithospheric mantle of stable cratons, which typically represent velocities decreasing with depth. The origins of these interfaces are poorly understood due to the difficulties in both characterizing them seismically and reconciling the observations with thermal‐chemical models of cratons. Metasomatism of the cratonic lithosphere has been reported by numerous geochemical and petrological studies worldwide, yet its seismic signature remains elusive. Here, we identify two distinct mid‐lithosphere discontinuities at ∼87 and ∼117 km depth beneath the eastern Wyoming craton and the southwestern Superior craton by analyzing seismic data recorded by two longstanding stations. Our waveform modeling shows that the shallow and deep interfaces represent isotropic velocity drops of 2%–8% and 4%–9%, respectively, depending on the contributions from changes in radial anisotropy and density. By building a thermal‐chemical model including the regional xenolith thermobarometry constraints and the experimental phase‐equilibrium data of mantle metasomatism, we show that the shallow interface probably represents the metasomatic front, below which hydrous minerals such as amphibole and phlogopite are present, whereas the deep interface may be caused by the onset of carbonated partial melting. The hydrous minerals and melts are products of mantle metasomatism, with CO2‐H2O‐rich siliceous melt as a probable metasomatic reagent. Our results suggest that mantle metasomatism is probably an important cause of mid‐lithosphere discontinuities worldwide, especially near craton boundaries, where the mantle lithosphere may be intensely metasomatized by fluids and melts released by subducting slabs.more » « less
-
Abstract Alaska is a tectonically active region with a long history of subduction and terrane accretion, but knowledge of its deep seismic structure is limited by a relatively sparse station distribution. By combining data from the EarthScope Transportable Array and other regional seismic networks, we obtain a high‐resolution state‐wide map of the Moho and upper‐mantle discontinuities beneath Alaska using teleseismic SH‐wave reverberations. Crustal thickness is generally correlated with elevation and the deepest Moho is in the region with basal accretion of the subducted Yakutat plate, consistent with its higher density due to a more mafic composition. The crustal thickness in the Brooks Range agrees with the prediction based on Airy isostasy and the weak free‐air gravity anomaly, suggesting that this region probably does not have significant density anomalies. We also resolve the 410, 520, and 660 discontinuities in most regions, with a thickened mantle transition zone (MTZ) and a normal depth difference between the 520 and 660 discontinuities (d660‐d520) under central Alaska, indicating the presence of the subducted Pacific slab in the upper MTZ. A near‐normal MTZ and a significantly smaller d660‐d520 are resolved under southeastern Alaska, suggesting potential mantle upwelling in the lower MTZ. Beneath the Alaska Peninsula, the thinned MTZ implies that the Pacific slab may not have reached the MTZ in this region, which is also consistent with recent tomography models. Overall, the results demonstrate a bent or segmented Pacific slab with varying depths under central Alaska and the Alaska Peninsula.more » « less
-
Abstract Template matching has proven to be an effective method for seismic event detection, but is biased toward identifying events similar to previously known events, and thus is ineffective at discovering events with non‐matching waveforms (e.g., those dissimilar to existing catalog events). In principle, this limitation can be overcome by cross‐correlating every segment (possible template) of a seismogram with every other segment to identify all similar event pairs, but doing so has been previously considered computationally infeasible for long time series. Here we describe a method, called the ‘Matrix Profile’ (MP), a “correlate everything with everything” calculation that can be efficiently and scalably computed. The MP returns the maximum value of the correlation coefficient of every sub‐window of continuous data with every other sub‐window, as well as the best‐correlated sub‐window location. Here we show how MP methods can obtain valuable results when applied to months and years of continuous seismic data in both local and global case studies. We find that the MP can identify many new events in Parkfield, California seismicity that are not contained in existing event catalogs and that it can efficiently find clusters of similar earthquakes in global seismic data. Either used by itself, or as a starting point for subsequent template matching calculations, the MP is likely to provide a useful new tool for seismology research.more » « less
An official website of the United States government
